Azure Databricks is a very cool easy to use platform for both analytics engineers and machine learning developers. I would like to use this post to summarize basic APIs and tricks in feature engineering with Azure Databricks. Previously I was using Jupyter notebook or PyCharm to develop or practice some machine learning cases. Compared to Jupyter Notebook, Azure Databricks provides similar Notebook, which adds some additional features. In the future I will describe how to use Azure Databricks for production.
Feature engineering is the preprocessing phase in machine learning, also needs huge effort from developers to get data ready for modeling and training. Here I list some basic feature engineering scenarios with PySpark in Azure Databricks.
If you want to run code snippet below in normal Jupyter Notebook, you need add Spark initialization code as below. (Not necessary in Azure Databricks, as it is already for use.)
spark = SparkSession\
.builder\
.appName("AppName")\
.getOrCreate()
Continuous Data
#Binarizer
from __future__ import print_function
from pyspark.sql import SparkSession
from pyspark.ml.feature import Binarizer
continuousDataFrame = spark.createDataFrame([
(0, 1.1),
(1, 8.5),
(2, 5.2)
], ["id", "feature"])
binarizer = Binarizer(threshold=5.1, inputCol="feature", outputCol="binarized_feature")
binarizedDataFrame = binarizer.transform(continuousDataFrame)
print("Binarizer output with Threshold = %f" % binarizer.getThreshold())
binarizedDataFrame.show()
#Bucketizer
from pyspark.ml.feature import Bucketizer
splits = [-float("inf"), -0.5, 0.0, 0.5, float("inf")]
data = [(-999.9,), (-0.5,), (-0.3,), (0.0,), (0.2,), (999.9,)]
dataFrame = spark.createDataFrame(data, ["features"])
bucketizer = Bucketizer(splits=splits, inputCol="features", outputCol="bucketedFeatures")
# Assign buckets per the splits boundary
bucketedData = bucketizer.transform(dataFrame)
print("Bucketizer output with %d buckets" % (len(bucketizer.getSplits())-1))
bucketedData.show()
#QuantileDiscretizer
from pyspark.ml.feature import QuantileDiscretizer
data = [(0, 18.0), (1, 19.0), (2, 8.0), (3, 5.0), (4, 2.2), (5, 9.2), (6, 14.4)]
df = spark.createDataFrame(data, ["id", "hour"])
df = df.repartition(1)
# Divide into 3 buckets as quantile distribution
discretizer = QuantileDiscretizer(numBuckets=3, inputCol="hour", outputCol="result")
discretizerModel = discretizer.fit(df)
result = discretizerModel.transform(df)
result.show()
#MaxAbsScaler
from pyspark.ml.feature import MaxAbsScaler
from pyspark.ml.linalg import Vectors
dataFrame = spark.createDataFrame([
(0, Vectors.dense([1.0, 0.1, -8.0]),),
(1, Vectors.dense([2.0, 1.0, -4.0]),),
(2, Vectors.dense([4.0, 10.0, 8.0]),)
], ["id", "features"])
scaler = MaxAbsScaler(inputCol="features", outputCol="scaledFeatures")
# Calculate Max value model
scalerModel = scaler.fit(dataFrame)
# Transform with scale model, so that values are scaled between [-1.0, 1.0]
scaledData = scalerModel.transform(dataFrame)
scaledData.select("features", "scaledFeatures").show()
#Standard scaler
from pyspark.ml.feature import StandardScaler
dataFrame = spark.read.format("libsvm").load("data/mllib/sample_libsvm_data.txt")
scaler = StandardScaler(inputCol="features", outputCol="scaledFeatures",
withStd=True, withMean=False)
# Calculate mean and variance
scalerModel = scaler.fit(dataFrame)
# Standardize
scaledData = scalerModel.transform(dataFrame)
scaledData.show()
#Polynomial expansion
from pyspark.ml.feature import PolynomialExpansion
df = spark.createDataFrame([
(Vectors.dense([2.0, 1.0]),),
(Vectors.dense([0.0, 0.0]),),
(Vectors.dense([3.0, -1.0]),)
], ["features"])
polyExpansion = PolynomialExpansion(degree=3, inputCol="features", outputCol="polyFeatures")
polyDF = polyExpansion.transform(df)
polyDF.show(truncate=False)
Discrete Data
# StringIndexer and One-hot encoder
from pyspark.ml.feature import OneHotEncoder, StringIndexer
df = spark.createDataFrame([
(0, "a"),
(1, "b"),
(2, "c"),
(3, "a"),
(4, "a"),
(5, "c")
], ["id", "category"])
stringIndexer = StringIndexer(inputCol="category", outputCol="categoryIndex")
model = stringIndexer.fit(df)
indexed = model.transform(df)
encoder = OneHotEncoder(inputCol="categoryIndex", outputCol="categoryVec")
encoded = encoder.transform(indexed)
encoded.show()
Text
#Use Stop Words
from pyspark.ml.feature import StopWordsRemover
sentenceData = spark.createDataFrame([
(0, ["I", "saw", "the", "red", "balloon"]),
(1, ["Mary", "had", "a", "little", "lamb"])
], ["id", "raw"])
remover = StopWordsRemover(inputCol="raw", outputCol="filtered")
remover.transform(sentenceData).show(truncate=False)
# Tokenizer
from pyspark.ml.feature import Tokenizer, RegexTokenizer
from pyspark.sql.functions import col, udf
from pyspark.sql.types import IntegerType
sentenceDataFrame = spark.createDataFrame([
(0, "Hi I heard about Spark"),
(1, "I wish Java could use case classes"),
(2, "Logistic,regression,models,are,neat")
], ["id", "sentence"])
tokenizer = Tokenizer(inputCol="sentence", outputCol="words")
regexTokenizer = RegexTokenizer(inputCol="sentence", outputCol="words", pattern="\\W")
countTokens = udf(lambda words: len(words), IntegerType())
tokenized = tokenizer.transform(sentenceDataFrame)
tokenized.select("sentence", "words")\
.withColumn("tokens", countTokens(col("words"))).show(truncate=False)
regexTokenized = regexTokenizer.transform(sentenceDataFrame)
regexTokenized.select("sentence", "words") \
.withColumn("tokens", countTokens(col("words"))).show(truncate=False)
# Count Vectorizer
from pyspark.ml.feature import CountVectorizer
df = spark.createDataFrame([
(0, "a b c".split(" ")),
(1, "a b b c a".split(" "))
], ["id", "words"])
cv = CountVectorizer(inputCol="words", outputCol="features", vocabSize=3, minDF=2.0)
model = cv.fit(df)
result = model.transform(df)
result.show(truncate=False)
# TF-IDF
from pyspark.ml.feature import HashingTF, IDF, Tokenizer
sentenceData = spark.createDataFrame([
(0.0, "Hi I heard about Spark"),
(0.0, "I wish Java could use case classes"),
(1.0, "Logistic regression models are neat")
], ["label", "sentence"])
tokenizer = Tokenizer(inputCol="sentence", outputCol="words")
wordsData = tokenizer.transform(sentenceData)
hashingTF = HashingTF(inputCol="words", outputCol="rawFeatures", numFeatures=20)
featurizedData = hashingTF.transform(wordsData)
idf = IDF(inputCol="rawFeatures", outputCol="features")
idfModel = idf.fit(featurizedData)
rescaledData = idfModel.transform(featurizedData)
rescaledData.select("label", "features").show()
# NGram
from pyspark.ml.feature import NGram
#Hanmeimei loves LiLei
#LiLei loves Hanmeimei
wordDataFrame = spark.createDataFrame([
(0, ["Hi", "I", "heard", "about", "Spark"]),
(1, ["I", "wish", "Java", "could", "use", "case", "classes"]),
(2, ["Logistic", "regression", "models", "are", "neat"])
], ["id", "words"])
ngram = NGram(n=2, inputCol="words", outputCol="ngrams")
ngramDataFrame = ngram.transform(wordDataFrame)
ngramDataFrame.select("ngrams").show(truncate=False)
Others
# SQL Transformer
from pyspark.ml.feature import SQLTransformer
df = spark.createDataFrame([
(0, 1.0, 3.0),
(2, 2.0, 5.0)
], ["id", "v1", "v2"])
sqlTrans = SQLTransformer(
statement="SELECT *, (v1 + v2) AS v3, (v1 * v2) AS v4 FROM __THIS__")
sqlTrans.transform(df).show()
# R formula transform
from pyspark.ml.feature import RFormula
dataset = spark.createDataFrame(
[(7, "US", 18, 1.0),
(8, "CA", 12, 0.0),
(9, "NZ", 15, 0.0)],
["id", "country", "hour", "clicked"])
formula = RFormula(
formula="clicked ~ country + hour",
featuresCol="features",
labelCol="label")
output = formula.fit(dataset).transform(dataset)
output.select("features", "label").show()
Note that: There are many feature engineering APIs are not mentioned here. Please see more info from latest pyppark.ml.feature package.
https://spark.apache.org/docs/latest/api/python/pyspark.ml.html#module-pyspark.ml.feature